Intermediate Convergents and a Metric Theorem of Khinchin
نویسنده
چکیده
Abstract. A landmark theorem in the metric theory of continued fractions begins this way: Select a non-negative real function f defined on the positive integers and a real number x, and form the partial sums sn of f evaluated at the partial quotients a1, . . . , an in the continued fraction expansion for x. Does the sequence {sn/n} have a limit as n → ∞? In 1935 A. Y. Khinchin proved that the answer is yes for almost every x, provided that the function f does not grow too quickly. In this paper we are going to explore a natural reformulation of this problem in which the function f is defined on the rationals and the partial sums in question are over the intermediate convergents to x with denominators less than a prescribed amount. By using some of Khinchin’s ideas together with more modern results we are able to provide a quantitative asymptotic theorem analogous to the classical one mentioned above.
منابع مشابه
FUZZY QUASI-METRIC VERSIONS OF A THEOREM OF GREGORI AND SAPENA
We provide fuzzy quasi-metric versions of a fixed point theorem ofGregori and Sapena for fuzzy contractive mappings in G-complete fuzzy metricspaces and apply the results to obtain fixed points for contractive mappingsin the domain of words.
متن کامل$S$-metric and fixed point theorem
In this paper, we prove a general fixed point theorem in $textrm{S}$-metric spaces for maps satisfying an implicit relation on complete metric spaces. As applications, we get many analogues of fixed point theorems in metric spaces for $textrm{S}$-metric spaces.
متن کاملA common fixed point theorem on ordered metric spaces
A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.
متن کاملFIXED POINT THEOREM ON INTUITIONISTIC FUZZY METRIC SPACES
In this paper, we introduce intuitionistic fuzzy contraction mappingand prove a fixed point theorem in intuitionistic fuzzy metric spaces.
متن کاملFIXED POINT THEOREM OF KANNAN-TYPE MAPPINGS IN GENERALIZED FUZZY METRIC SPACES
Binayak et al in [1] proved a fixed point of generalized Kannan type-mappings in generalized Menger spaces. In this paper we extend gen- eralized Kannan-type mappings in generalized fuzzy metric spaces. Then we prove a fixed point theorem of this kind of mapping in generalized fuzzy metric spaces. Finally we present an example of our main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009